The Cauchy problem for the energy-critical inhomogeneous nonlinear Schrödinger equation

نویسندگان

چکیده

In this paper, we study the Cauchy problem for energy-critical inhomogeneous nonlinear Schrödinger equation $$i\partial _{t}u+\Delta u=\lambda |x|^{-\alpha }|u|^{\beta }u$$ in $$H^1$$ . The well-posedness theory has been intensively studied recent years, but currently known approaches do not work critical case $$\beta =(4-2\alpha )/(n-2)$$ It is still an open problem. main contribution of paper to develop case.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse Problem for an Inhomogeneous Schrödinger Equation * †

Let (− k 2)u = −u + q(x)u − k 2 u = δ(x), x ∈ R, ∂u ∂|x| − iku → 0, |x| → ∞. Assume that the potential q(x) is real-valued and compactly supported: q(x) = q(x), q(x) = 0 for |x| ≥ 1, 1 −1 |q|dx < ∞, and that q(x) produces no bound states. Let u(−1, k) and u(1, k) ∀k > 0 be the data. Theorem.Under the above assumptions these data determine q(x) uniquely.

متن کامل

The Cauchy problem for the inhomogeneous porous medium equation

We consider the initial value problem for the filtration equation in an inhomogeneous medium ρ(x)ut = ∆u, m > 1. The equation is posed in the whole space R, n ≥ 2, for 0 < t < ∞ ; ρ(x) is a positive and bounded function with a certain behaviour at infinity. We take initial data u(x, 0) = u0(x) ≥ 0, and prove that this problem is well-posed in the class of solutions with finite “energy”, that is...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Energy-conserving methods for the nonlinear Schrödinger equation

In this paper, we further develop recent results in the numerical solution of Hamiltonian partial differential equations (PDEs) [14], by means of energyconserving methods in the class of Line Integral Methods, in particular, the Runge-Kutta methods named Hamiltonian Boundary Value Methods (HBVMs). We shall use HBVMs for solving the nonlinear Schrödinger equation (NLSE), of interest in many appl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archiv der Mathematik

سال: 2021

ISSN: ['0003-889X', '1420-8938']

DOI: https://doi.org/10.1007/s00013-021-01632-x